Resistance testing for Pectobacterium and Dickeya

Ian Toth

Control of blackleg disease

- Blackleg and soft rot diseases are caused by Pectobacterium and Dickeya spp.
 and are currently controlled by:
 - Crop inspection at different stages of seed production (those that are infected are heavily removed from the seed production chain)
 - Good storage temperature and ventillation that prevent disease development in store (but have little effect on disease development once back in the field)
 - Deployment of cultivars with disease resistance
 - Czajkowski et al. 2011 Plant Pathol. 60, 999

Disease resistance

The James Hutton Institute

- Few potato cultivars show resistance / tolerance to blackleg and soft rot.
- Some cultivars show partial resistance.
- Attempts to breed cultivars of Solanum tuberosum with increased resistance have been only partially successful, perhaps due to a narrow range of genetic diversity being used in parental material.

Finlay Dale

Discovering resistance in the Commonwealth Potato Collection (CPC)

1500 accessions of ca. 80 wild and cultivated potato species.

Solanum phureja

Disease resistant varieties

- Crosses between S. tuberosum (tetraploid) and S. phureja (diploid) display relatively high resistance but tuber yields are reduced.
- There is a lack of resistant tetraploid parental germplasm available to breeders world-wide.
- Of the 245 culivars in the 'British Potato Variety Database' only 17 show moderate to high resistance, 5 of which include S. phureja material.

Resistance to Damage, Pests and Diseases	Low								High
Dry rot (Fusarium coeruleum)					5				
Dry rot (Fusarium sulphureum)	1								
Late blight on foliage (Phytophthora infestans)				4					
Late blight on tubers (Phytophthora infestans)							7		
Powdery scab (Spongospora subterranea)							7		
Blackleg (Pectobacterium atrosepticum)								8	
Common scab (Streptomyces scabiei)			3						
Potato Cyst Nematode (Globodera pallida Pa 2/3, 1)		2							
Potato Cyst Nematode (Globodera rostochiensis Ro1)	1								
Potato Leafroll Virus									
Potato Virus Yo		2							
Bruising				100		100			9
Splitting						6			

The project

This project is to investigate and identify the source(s) of resistance in *S. phureja* to allow it to be fully exploited in developing new resistant (tetraploid) cultivars

Resistance to multiple strains and species

07.H.128

Tested in 2013

Populations to test

Testing 2013

Testing 2014

Crossed 2013

04.H.37.A2 x DB226(70) 04.H.14.A1 x DB226(70) 04.H.37.A2 x 04.H.39.A1 04.H.14.A1 x 04.H.39.A1

200 true seed planted 2013

Development of a new test

- Root cuttings
- Vacuum infiltration of whole seedling
- Increased humidity
- Forceps damage to leaf
- Petiole test (vd Wolf)

Leaf segment assay

The James **Hutton Institute**

Future work

- Develop a high throughput glasshouse method.
- Test bacterial growth and strain movement (using GFP) to ensure that both parental material and resulting progeny are resistant rather than tolerant.
- Test resistant material against other strains and species.

Acknowledgements

- Finlay Dale
- Emma Campbell, Sonia Humphris
- Jan van der Wolf (PRI, Wageningen)

