

Research on Integrated Pest Management (IPM) for potato

Ian Toth, Alison Lees, Jennie Brierley, Roy Neilson & Damian Bienkowski

What is IPM?

Integrated pest [and disease] management (IPM) is the coordinated use of complimentary methods to suppress pests, weeds and diseases and reduce environmental risks.

http://www.gov.scot/Topics/farmingrural/Agriculture/Environment/Pesticides/IntegratedPestManagement

Why do we need IPM?

E C Oerke: Journal of Agricultural Science (2006)

IPM@Hutton http://ipm.hutton.ac.uk/

Crop protectants & Biopesticides

Landscape Management

Pollinators

Biocontrol

Pest & Disease Resistance

Rotations & Crop Diversity

Biodiversity

Detection & Monitoring

Weed Management

IPM strategies

Blackleg disease

Late blight

Soil-borne pathogens

New technologies

IPM strategies for blackleg disease

Ventilated storage

Seed certification

Good hygiene

Safe Haven scheme

Field rotations

Disease resistance / tolerance

Field trials

Disease forecasting and management

Pete Skelsey

IPM strategies for Late blight

'Fight Against Blight' campaign

• Scouts monitor and report blight around the UK

AHDB

- Outbreak alerts sent to growers
- P. infestans samples collected

Understanding pathogen populations

Samples genotyped and associated with phenotype to inform growers on:

- Aggressive lineages
- Fungicide resistance and advice on their use
- Host resistance (breeders using 13_A2 and 6_A1 for selection)

European monitoring (Euroblight)

- Euroblight offers a wider perspective
- Identifies the emergence of lineages
- Improves efficiency of control measures

Hutton criteria vs Smith period

Two consecutive days where:

- Each day has a minimum temperature of 10°C
- Each day has at least 11 hours (Smith) or 6 hours (Hutton) of relative humidity ≥ 90%

The James Hutton Institute

Sustainable fungicide programme at CSC

Hutton criteria is being used to test a 'sustainable' fungicide programme at the Centre for Sustainable Cropping (CSC)

IPM strategies for soil-borne pathogens

Soil-borne pathogens cause serious blemish diseases

Evaluating disease risk

Decision making

Varietal selection

Crop management

Site selection

Chemical control

IPM strategies for free-living nematodes

Innovate LIK

- Trichodorus; Paratrichodorus; Nanidorus; Longidorus
- Feed on roots stunted crops, reduced yield and quality.
- Vector or non-vector species
- Mixed populations
- 13 virus-vector species (8 in UK)
- Identification of specific groups can be difficult
- Decreasing skill base of taxonomic expertise

FLN and Spraing

Free-living nematodes (FLN) transmit Tobacco Rattle Virus (TRV) leading to spraing symptoms in potato.

Through a consortium of academic and industrial partners, strategies for quantifying and controlling freeliving nematode populations and consequent damage by Tobacco Rattle Virus to Improve Potato Yield and Quality have been developed.

Diagnostic testing of FLNs

-				- 1
		Ct	Std Dev	
	FAM - A1	12.631	0.005 🔺	
1	FAM - A2	12.772	0.006	
	FAM - A3	12.490	0.011	
	FAM - A4	16.201	0.006	
	FAM - A5	16.064	0.009 🔻	-
		FAM - A1 FAM - A2 FAM - A3 FAM - A4 FAM - A5	Ct FAM - A1 12.631 FAM - A2 12.772 FAM - A3 12.490 FAM - A4 16.201 FAM - A5 16.064	Ct Std Dev FAM - A1 12.631 0.005 FAM - A2 12.772 0.006 FAM - A3 12.490 0.011 FAM - A3 12.490 0.011 FAM - A3 16.064 0.009

New technologies – Optical imaging

Aims:

- Direct growers to problem areas
- Trigger decision management systems to minimise:
 - economic impact of diseases
 - environmental impact of disease control

New Technologies - Poptical

"In-field optical detection of potato diseases"

- Assess robustness of aerial imaging
- Provide early detection data for disease management decisions
- Has potential to 'map' problems to inform crop rotations

New Technologies - Poptical

Challenges

- Differentiate between overlapping disease symptoms
- Detection on 'symptomless' plants
- Accurate disease diagnosis
- Areas of exploration
 - Optimal flight timings
 - Growth changes over time
 - Most sensitive wavelengths for specific pest groups
 - Data analysis techniques

Innovate LIK

Technology Strategy Board

The potato IPM toolbox

Farm scale

Centre for sustainable cropping platform

Acknowledgements – Innovate projects

The James Hutton Institute

Acknowledgements

POTATOES

The Scottish Government Riaghaltas na h-Alba

